Binary tree
A Binary Tree is a non-linear and hierarchical data structure where each node can have up to two children, known as the left child and right child. It is widely used in computer science and makes it easy to store and retrieve data by letting you do things like adding, deleting, and traversing. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves.
Structure of Binary Tree
- Nodes: The core components of a binary tree, each containing data and links to two child nodes (left and right).
- Root: The highest node in the tree, which has no parent and acts as the origin of all other nodes.
- Parent node: A node that has one or more children. In a binary tree, a parent node can have at most two child nodes.
- Child node: A node that descends from another node (its parent), categorized as either a left or right child.
- Leaf node: A node without any children. In Lua, this means both of its child nodes are
nil
. - Height of binary tree: The count of nodes along the longest path from the root to the deepest leaf, or the total number of levels.
- Depth of a node: The number of edges between a given node and the root. The root node has a depth of
0
. - Subtree: A section of the tree that forms its own hierarchy, often represented as a magenta triangle in a diagram above.
Building Binary tree
Binary Tree module
First, let’s create a class BinaryTree
with a static method createNode
Also, here we can define type Node
to improve DX.
---@class BinaryTree
local BinaryTree = {
---Create a new node
---@param data any
---@return Node
createNode = function(data)
return {
left = nil,
right = nil,
data = data,
}
end,
}
BinaryTree.__index = BinaryTree
---Creates new Binary Tree
---@return BinaryTree
function BinaryTree:new()
local t = {
root = nil,
}
return setmetatable(t, self)
end
Building Binary Tree as the diagram
To build a tree, we need to create nodes and make relations between them.
local a = BinaryTree.createNode("A") -- root
local b = BinaryTree.createNode("B")
local c = BinaryTree.createNode("C")
local d = BinaryTree.createNode("D")
local e = BinaryTree.createNode("E")
local f = BinaryTree.createNode("F")
local g = BinaryTree.createNode("G")
local h = BinaryTree.createNode("H")
local btree = BinaryTree:new()
btree.root = a
a.left = b
a.right = c
b.left = d
b.right = e
e.left = g
e.right = h
c.left = f
Binary Tree operations
Traverse
Traversal in a binary tree involves visiting all the nodes of the binary tree. Like in graphs traversal algorithms can be classified broadly into two categories, DFS and BFS. Here we use callback
pattern to make operations with the node on traversal.
---@alias BinaryTreeCallback fun(node: Node)
Depth-First Search (DFS) algorithms
DFS explores as far down a branch as possible before backtracking. It is implemented using recursion. The main traversal methods in DFS for binary trees.
Pre-order Traversal
Visits the node first, then the left subtree, then the right subtree.
---Pre-order DFS: Root, Left, Right
---@param node Node | nil
---@param callback BinaryTreeCallback
function BinaryTree:preOrderDFS(node, callback)
if node == nil then
return
end
if type(callback) == "function" then
callback(node)
end
self:preOrderDFS(node.left, callback)
self:preOrderDFS(node.right, callback)
end
Post-order Traversal
Visits the left subtree, then the right subtree, then the node.
---Post-order DFS: Left, Right, Root
---@param node Node | nil
---@param callback BinaryTreeCallback
function BinaryTree:postOrderDFS(node, callback)
if node == nil then
return
end
self:postOrderDFS(node.left, callback)
self:postOrderDFS(node.right, callback)
if type(callback) == "function" then
callback(node)
end
end
In-order Traversal
Visits the left subtree, then the node, then the right subtree.
---In-order DFS: Left, Root, Right
---@param node Node
---@param callback BinaryTreeCallback
function BinaryTree:inOrderDFS(node, callback)
if node == nil then
return
end
self:inOrderDFS(node.left, callback)
if type(callback) == "function" then
callback(node)
end
self:inOrderDFS(node.right, callback)
end
Breadth-First Search (BFS)
BFS explores all nodes at the present depth before moving on to nodes at the next depth level. It is typically implemented using a queue.
---BFS: Level order traversal
---@param callback BinaryTreeCallback
function BinaryTree:BFS(callback)
if self.root == nil then
return
end
local queue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local node = queue:dequeue()
if type(callback) == "function" then
callback(node)
end
if node.left ~= nil then
queue:enqueue(node.left)
end
if node.right ~= nil then
queue:enqueue(node.right)
end
end
end
Searching
Searching for a value in a binary tree means looking through the tree to find a node that has that value. Since binary trees do not have a specific order like binary search trees, we typically use any traversal method to search. It is good to define predicate
type to make possible more complex search comparisons.
---@alias BinaryTreePredicate fun(node: Node, needle: any): boolean
---Checks that value has a node
---@param node Node | nil
---@param needle any
---@param predicate BinaryTreePredicate
function BinaryTree:contains(node, needle, predicate)
-- Base case: If the tree is empty or we've reached
if node == nil then
return false
end
-- If the node's data is equal to the value we are searching for.
if predicate(node, needle) then
return true
end
-- Recursively search in the left and right subtrees
local leftFound = self:contains(node.left, needle, predicate)
local rightFound = self:contains(node.right, needle, predicate)
return leftFound or rightFound
end
Insertion
Inserting elements into a binary tree involves adding a new node. Since a binary tree does not follow a specific ordering of elements, there is no need to consider their arrangement. If the tree is empty, the first step is to create a root node. For subsequent insertions, the process involves iteratively searching each level of the tree for an available spot. When an empty left or right child is found, the new node is inserted in that position. By convention, insertion begins with the left child node.
---Inserts new element to the binary tree.
---@param data any
---@return Node
function BinaryTree:insert(data)
if self.root == nil then
self.root = BinaryTree.createNode(data)
return self.root
end
local queue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local temp = queue:dequeue()
if temp.left == nil then
temp.left = BinaryTree.createNode(data)
break
else
queue:enqueue(temp.left)
end
if temp.right == nil then
temp.right = BinaryTree.createNode(data)
break
else
queue:enqueue(temp.right)
end
end
return root
end
Deletion
Deleting a node from a binary tree involves removing a specific node while maintaining the tree’s structure. First, locate the node to be deleted by traversing the tree using any traversal method. Then, replace its value with the value of the last node in the tree, which can be found by navigating to the rightmost leaf. After that, delete the last node to preserve the tree’s structure. It is essential to handle special cases, such as deleting from an empty tree, to prevent errors.
Tip
There is no fixed rule for deletion, but it is crucial to ensure that the fundamental properties of the binary tree are maintained.
---Deletes an element from the binary tree.
---@param data any
---@return Node | nil
function BinaryTree:delete(data)
if self.root == nil then
return nil
end
local target
local queue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local currNode = queue:dequeue()
if currNode.data == data then
target = currNode
break
end
if currNode.left ~= nil then
queue:enqueue(currNode.left)
end
if currNode.right ~= nil then
queue:enqueue(currNode.right)
end
end
if target == nil then
return self.root
end
-- Find the deepest rightmost node and its parent
local lastNode, lastParent
queue = Queue:new()
local parentQueue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local currentNode = queue:dequeue()
local parentNode = parentQueue:dequeue()
lastNode = currentNode
lastParent = parentNode
if currentNode.left ~= nil then
queue:enqueue(currentNode.left)
parentQueue:enqueue(currentNode)
end
if currentNode.right ~= nil then
queue:enqueue(currentNode.right)
parentQueue:enqueue(currentNode)
end
end
-- Replace target's value with the last node's value
target.data = lastNode.data
-- Remove the last node
if lastParent ~= nil then
if lastParent.left == lastNode then
lastParent.left = nil
else
lastParent.right = nil
end
else
return nil
end
return self.root
end
Get size of the tree
Calculates the number of nodes in the binary tree.
---Gets the number of nodes in BinaryTree.
---@return number
function BinaryTree:size()
local n = 0
self:preOrderDFS(self.root, function()
n = n + 1
end)
return n
end
Get level (depth) of a node
Gets how deep the node is.
---Gets the depth of the given node. 0 is for the root node, -1 if tree is empty.
---@param target any
---@param level? number
---@param node? Node | nil
---@return number
function BinaryTree:getLevel(target, level, node)
level = level or 0
node = node or self.root
if node == nil then
return -1
end
if target == node.data then
return level
end
local leftLevel = -1
if node.left ~= nil then
leftLevel = self:getLevel(target, level + 1, node.left)
if leftLevel ~= -1 then
return leftLevel
end
end
if node.right ~= nil then
return self:getLevel(target, level + 1, node.right)
end
return -1
end
Get the height (depth) of the tree
Get the total levels (depth or height) of the binary tree.
---@param node Node | nil
---@return number
function BinaryTree:getHeight(node)
node = node or self.root
if node == nil then
return -1
end
local leftHeight = node.left ~= nil and self:getHeight(node.left) or -1
local rightHeight = node.right ~= nil and self:getHeight(node.right) or -1
return math.max(leftHeight, rightHeight) + 1
end
BinaryTree.lua
local Queue = require("./Queue")
---@class Node
---@field public left Node | nil
---@field public right Node | nil
---@field public data any
---@alias BinaryTreeCallback fun(node: Node)
---@alias BinaryTreePredicate fun(node: Node, needle: any): boolean
---@BinaryTreePredicate
local compare = function(node, value)
return node.data == value
end
---@class BinaryTree
local BinaryTree = {
---Create a new node
---@param data any
---@return Node
createNode = function(data)
return {
left = nil,
right = nil,
data = data,
}
end,
}
BinaryTree.__index = BinaryTree
---Creates new Binary Tree
---@return BinaryTree
function BinaryTree:new()
local t = {
root = nil,
}
return setmetatable(t, self)
end
---Pre-order DFS: Root, Left, Right
---@param node Node | nil
---@param callback BinaryTreeCallback
function BinaryTree:preOrderDFS(node, callback)
if node == nil then
return
end
if type(callback) == "function" then
callback(node)
end
self:preOrderDFS(node.left, callback)
self:preOrderDFS(node.right, callback)
end
---Post-order DFS: Left, Right, Root
---@param node Node | nil
---@param callback BinaryTreeCallback
function BinaryTree:postOrderDFS(node, callback)
if node == nil then
return
end
self:postOrderDFS(node.left, callback)
self:postOrderDFS(node.right, callback)
if type(callback) == "function" then
callback(node)
end
end
---In-order DFS: Left, Root, Right
---@param node Node
---@param callback BinaryTreeCallback
function BinaryTree:inOrderDFS(node, callback)
if node == nil then
return
end
self:inOrderDFS(node.left, callback)
if type(callback) == "function" then
callback(node)
end
self:inOrderDFS(node.right, callback)T
end
---BFS: Level order traversal
---@param callback BinaryTreeCallback
function BinaryTree:BFS(callback)
if self.root == nil then
return
end
local queue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local node = queue:dequeue()
if type(callback) == "function" then
callback(node)
end
if node.left ~= nil then
queue:enqueue(node.left)
end
if node.right ~= nil then
queue:enqueue(node.right)
end
end
end
---Checks that value has a node
---@param node Node | nil
---@param needle any
---@param predicate BinaryTreePredicate
function BinaryTree:contains(node, needle, predicate)
-- Base case: If the tree is empty or we've reached
if node == nil then
return false
end
-- If the node's data is equal to the value we are
-- searching for
if predicate(node, needle) then
return true
end
-- Recursively search in the left and right subtrees
local leftFound = self:contains(node.left, needle, predicate)
local rightFound = self:contains(node.right, needle, predicate)
return leftFound or rightFound
end
---Inserts new element to the binary tree.
---@param data any
---@return Node
function BinaryTree:insert(data)
if self.root == nil then
self.root = BinaryTree.createNode(data)
return self.root
end
local queue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local temp = queue:dequeue()
if temp.left == nil then
temp.left = BinaryTree.createNode(data)
break
else
queue:enqueue(temp.left)
end
if temp.right == nil then
temp.right = BinaryTree.createNode(data)
break
else
queue:enqueue(temp.right)
end
end
return root
end
---Deletes an element from the binary tree.
---@param data any
---@return Node | nil
function BinaryTree:delete(data)
if self.root == nil then
return nil
end
local target
local queue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local currNode = queue:dequeue()
if currNode.data == data then
target = currNode
break
end
if currNode.left ~= nil then
queue:enqueue(currNode.left)
end
if currNode.right ~= nil then
queue:enqueue(currNode.right)
end
end
if target == nil then
return self.root
end
-- Find the deepest rightmost node and its parent
local lastNode, lastParent
queue = Queue:new()
local parentQueue = Queue:new()
queue:enqueue(self.root)
while not queue:isEmpty() do
local currentNode = queue:dequeue()
local parentNode = parentQueue:dequeue()
lastNode = currentNode
lastParent = parentNode
if currentNode.left ~= nil then
queue:enqueue(currentNode.left)
parentQueue:enqueue(currentNode)
end
if currentNode.right ~= nil then
queue:enqueue(currentNode.right)
parentQueue:enqueue(currentNode)
end
end
-- Replace target's value with the last node's value
target.data = lastNode.data
-- Remove the last node
if lastParent ~= nil then
if lastParent.left == lastNode then
lastParent.left = nil
else
lastParent.right = nil
end
else
return nil
end
return self.root
end
---Gets the number of nodes in BinaryTree.
---@return number
function BinaryTree:size()
local n = 0
self:preOrderDFS(self.root, function(_)
n = n + 1
end)
return n
end
---@param node Node | nil
---@return number
function BinaryTree:getHeight(node)
node = node or self.root
if node == nil then
return -1
end
local leftHeight = node.left ~= nil and self:getHeight(node.left) or -1
local rightHeight = node.right ~= nil and self:getHeight(node.right) or -1
return math.max(leftHeight, rightHeight) + 1
end
---Gets the depth of the given node. 0 is for the root node, -1 if the Binary Tree is empty.
---@param target any
---@param level? number
---@param node? Node | nil
---@return number
function BinaryTree:getLevel(target, level, node)
level = level or 0
node = node or self.root
if node == nil then
return -1
end
if target == node.data then
return level
end
local leftLevel = -1
if node.left ~= nil then
leftLevel = self:getLevel(target, level + 1, node.left)
if leftLevel ~= -1 then
return leftLevel
end
end
if node.right ~= nil then
return self:getLevel(target, level + 1, node.right)
end
return -1
end
return BinaryTree
Usage of BinaryTree class
-- Create a new binary tree instance
local btree = BinaryTree:new()
-- Creating nodes
local a = BinaryTree.createNode("A") -- root
local b = BinaryTree.createNode("B")
local c = BinaryTree.createNode("C")
local d = BinaryTree.createNode("D")
local e = BinaryTree.createNode("E")
local f = BinaryTree.createNode("F")
local g = BinaryTree.createNode("G")
local h = BinaryTree.createNode("H")
-- Make relation between root and nodes
btree.root = a
a.left = b
a.right = c
b.left = d
b.right = e
e.left = g
e.right = h
c.left = f
btree:preOrderDFS(btree.root, function(node)
io.write(node.data, " -> ")
end)
print()
-- A -> B -> D -> E -> G -> H -> C -> F -> nil
btree:postOrderDFS(btree.root, function(node)
io.write(node.data, " -> ")
end)
print()
-- D -> G -> H -> E -> B -> F -> C -> A -> nil
btree:inOrderDFS(btree.root, function(node)
io.write(node.data, " -> ")
end)
print()
-- D -> B -> G -> E -> H -> A -> F -> C -> nil
btree:BFS(function(node)
io.write(node.data, " -> ")
end)
print()
-- A -> B -> C -> D -> E -> F -> G -> H -> nil
print(btree:contains(a, "F", compare), btree:contains(a, "J", compare))
btree:insert("I")
btree:insert("J")
btree:insert("K")
btree:insert("L")
btree:preOrderDFS(btree.root, function(node)
io.write(node.data, " -> ")
end)
print()
--A -> B -> D -> J -> K -> E -> G -> H -> C -> F -> L -> I -> nil
btree:delete("C")
btree:delete("E")
btree:preOrderDFS(btree.root, function(node)
io.write(node.data, " -> ")
end)
print()
-- A -> B -> D -> J -> K -> H -> G -> L -> F -> I ->
print(btree:size()) --> 10
print(btree:getHeight()) --> 3
print(btree:getLevel("A")) --> 0
print(btree:getLevel("B")) --> 1
print(btree:getLevel("D")) --> 2
print(btree:getLevel("G")) --> 3
Feedback
For feedback, please check the contacts section. Before writing, please specify where you came from and who you are. Sometimes spammers go insane. Thank you in advance for your understanding.